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The turbulent flow in a two-dimensional channel with roughness on one wall is
investigated using experiments and direct numerical simulations (DNS). The elements
have a square cross-section with height k = 0.1H (H is the channel half-width) and a
streamwise spacing of 4k. The Reynolds number Reτr

, based on the friction velocity
at the rough wall and H, is in the range 300–1100. Particular attention is given to
the rough-wall side. Measured turbulence intensities, length scales, leading terms in
the turbulent kinetic energy budget, and velocity spectra are compared with those
obtained from the DNS. Close agreement is found, yielding support for the simplifying
assumptions in the experiment (notably local isotropy and Taylor’s hypothesis) and
the adequacy of the spatial resolution in the simulation. Overall, the profiles of the
Reynolds normal stresses on the roughness side are almost independent of Reτr

, when
normalized by outer variables. Energy spectra at different locations above the rough
wall collapse well at high wavenumbers, when normalized by Kolmogorov scales. In
contrast to previous studies, a region of negative energy production near the location
of the maximum streamwise velocity is not observed. Comparison with a smooth-
wall channel, at similar values of the friction-velocity Reynolds number, highlights
differences only in the streamwise velocity component near the wall.

1. Introduction
In practice, any surface in contact with a fluid has a certain roughness, and this

directly affects the flow, at least in the proximity of the wall. Often, the roughness
has a pattern. Examples include heat exchanger elements, plant canopies, riblets, and
dimples on golf balls. In all these cases, the geometry of the solid boundary interferes
with the mechanism of heat (e.g. Chang, Liou & Juan 2005; Wang & Sunden 2005),
scalar or momentum transfer, compared to a smooth wall. The transfers are typically
increased when the roughness elements are transverse to the flow.

In the past, research on rough-wall turbulence has focused on several geometrical
configurations including: a two-dimensional channel with symmetric (i.e. on both
sides) two-dimensional roughness (Krogstad et al. 2005; Bakken et al. 2005; Ashrafian,
Andersson & Manhart 2004; Ashrafian & Andersson 2006a , b); a two-dimensional
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channel with asymmetric two-dimensional roughness (Cherukat, Na, Hanratty &
McLaughlin 1998; Miyake, Tsujimoto & Nakaji 2001; Miyake, Tsujimoto & Nagai
2002; Ikeda 2002; Ikeda & Durbin 2007; Cui, Patel & Lin 2003; Leonardi et al. 2003;
Nakagawa, Na & Hanratty 2003; Leonardi et al. 2004; Nagano et al. 2004; Hanjalić
& Launder 1972; Nakagawa & Hanratty 2003); a two-dimensional channel with
asymmetric three-dimensional roughness (Bhaganagar, Kim & Coleman 2004; Orlandi
& Leonardi 2006); a boundary layer with two-dimensional roughness (Krogstad &
Antonia 1994; Castillo et al. 2004; Djenidi, Elavarasan & Antonia 1999; Perry,
Schofield & Joubert 1969; Furuya, Miyata & Fujita 1976; Lee & Sung 2007); a
boundary layer with three-dimensional roughness (Snyder & Castro 2002; Cheng &
Castro 2002).

In most of the above references for the two-dimensional channel with asymmetric
two-dimensional roughness, the ratio of the roughness height to the characteristic
length of the outer flow is relatively large, of the order of 10 %. Therefore, it is
more appropriate to speak of a flow over obstacles (e.g. Jiménez 2004; Finnigan
2000; Raupach, Antonia & Rajagopalan 1991). In contrast, the classical experiments
in a pipe by Nikuradse dealt with sand-grain protrusions at the wall. Moreover,
the presence of a second boundary and the streamwise homogeneity may introduce
differences between the channel and the boundary layer (e.g. Bakken et al. 2005;
Krogstad & Antonia 1994). Previously, it was suggested that, at a high enough
Reynolds number, complete similarity would exist in the outer layer, between rough
and smooth walls (see Raupach et al. 1991) and perhaps between the channel flow
and the boundary layer.

While the smooth-wall channel has been studied extensively in experiments and
DNS, the channel with wall roughness has received less attention. Undoubtedly,
compared to a smooth wall, the roughness introduces a different level of complexity
because the structures tend to be smaller close to the boundary. In simulations, this
requires finer resolutions and, consequently, only recently have accurate computations
at moderate Reynolds numbers been possible. Krogstad et al. (2005) and Bakken
et al. (2005) reported simulations and experiments in a channel with symmetric,
two-dimensional roughness. With the help of quadrant analysis and Reynolds stress
anisotropy invariants, these authors showed that the turbulence structures in the outer
region may be affected by the geometry of the wall.

Here, we focus on a channel with two-dimensional roughness elements on one wall
only. Hanjalić & Launder (1972, referred to as HL hereafter) were first to consider
this geometry experimentally. They tested roughness elements of square cross-section
with a spacing-to-height ratio of 10, and a bulk-flow Reynolds number Reb in the
range 18500 − 56000 (in HL, the channel half-width is measured from the base of the
roughness). One of the conclusions was that, for different Reb, the profiles of each
of the three normal Reynolds stresses collapse, when normalized with the friction
velocity and a length scale associated with the zero-crossing of the Reynolds shear
stress. Detailed measurements of the kinetic energy budget terms and energy spectra
were also reported, although the resolution of the probe was marginal and the energy
dissipation rate was estimated indirectly, as the closing term in the energy budget
equation. DNS for this particular flow and geometry have been made recently by
Leonardi et al. (2003). Among other things, they documented the major contribution
of the pressure distribution around the elements to the increase in the drag, especially
when the roughness pitch is in the range 4 to 12 times the roughness height. This
strongly confirmed the earlier observations of Furuya et al. (1976) for a boundary
layer roughened with transverse circular rods.
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The interest in the rough-wall channel is partly due to the fact that higher Reynolds
numbers can be attained compared to the smooth wall but also because the roughness
can significantly increase the momentum and heat transfer rates. Perhaps more
generally, the rough-wall geometry may provide valuable insight into the asymptotic
(i.e. large Reynolds number) behaviour of the turbulence production in wall-bounded
flows.

The present work aims first to compare experiments and direct simulations of
a channel flow with roughness on one of the walls, for approximately the same
boundary and Reynolds number conditions. In many respects, DNS and experiments
complement each other. In simulations, all flow variables are accessible, but adequate
spatial resolution and integration time become critical at relatively large Reynolds
numbers. In experiments, extremely long velocity signals (of the order of several
thousands integral time scales) can be acquired, even at large Reynolds numbers.
However, a limited number of variables is accessible, and few can be measured
simultaneously, with sufficient space and time resolution. This work promotes an
approach based on simultaneous experimental and numerical analyses of the flow.
This one-to-one comparison enhances the experimenter’s ability to estimate two
important quantities, namely the rate at which the mean kinetic energy is dissipated
and the friction velocity at the wall. In particular, regarding the dissipation rate, our
main conclusion is that, in the equilibrium range, the smallest scales can be effectively
considered as isotropic. Using an accurate value of the friction velocity along with an
appropriate length scale certainly determines whether or not turbulence distributions
can be rescaled into a general form. The present analysis highlights what these scaling
quantities are for a channel flow with roughness on one wall.

A second point that we consider in detail is the kinetic energy budget. In HL, it was
conjectured that the asymmetry of the boundary conditions may induce a region of
negative turbulent energy production. In fact, if the locations where the mean velocity
is maximum and the shear stress is zero are not coincident, the possibility that the
mean field can extract energy from the turbulent field may exist, albeit in a limited
part of the flow. Although such an occurrence does not contradict any physical law,
it is somewhat counterintuitive since, for instance, it invalidates completely the eddy
viscosity concept (e.g. Mathieu & Scott 2000). Other flows show limited regions of
negative energy production, including the near field of a turbulent round jet (Zaman
& Hussain 1980), the plane wall jet (Mathieu & Scott 2000), the flow in an annulus
(Chung, Rhee & Sung 2002), the rotating channel and pipe (Jakirlić, Hanjalić &
Tropea 2002), the Rayleigh–Bénard convection cell (Liberzon et al. 2005). For the
asymmetric channel, support for a negative energy production region remains lacking.
Although HL and Thurlow & Klewicki (2000) showed this possibility in experiments,
recent DNS by Nagano et al. (2004) indicated that the zero-crossings of the shear
stress and location of maximum streamwise velocity differed by only about 0.8 % to
2.8 %. Nagano et al. (2004) hypothesized that this could depend on their low value of
Reb. Also Leonardi, Orlandi & Antonia (2005) found that the two loci were almost
coincident. If the negative energy production region were significant, one would expect
to see some difference between the boundary layer and the asymmetric channel.

A further aspect, related to the asymmetry of the boundary conditions in the present
flow, is the approach of the velocity profiles towards an asymptotic state. Since the fric-
tion coefficient on the rough wall is arguably independent of the Reynolds number –
because it is largely due to the pressure drag – the evolution of the turbulent profiles
with Reb may depend solely on the behaviour of the flow near the smooth wall. The
friction coefficient on that side varies with the Reynolds number.
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Figure 1. Schematic of the two-dimensional channel with the roughness geometry. The origin
of the Cartesian coordinate system is at mid-span, the x-axis along the streamwise direction,
and the z-axis on the leading edge of an element. The blow-up shows the two streamwise
locations (leading edge LE and midway MW) where the measurements are made. k, roughness
height; λ, roughness pitch; g, roughness gap; H , channel half-width; D, channel span; U ,
streamwise velocity.

Lastly, we consider the turbulent energy spectra. In the literature regarding channel
flow with roughness, these have not received the same attention as other basic
turbulent statistics. As previously noted, the data of HL suffered from limited spatial
resolution of the hot wire and consequently new measurements are desirable. More
recently, Nakagawa & Hanratty (2003) and Nakagawa et al. (2003) showed that
the velocity spectra, measured over a wavy wall in an asymmetric channel, collapse
on outer variables, when the distance from the wall exceeds about 0.2yU (yU is the
location of the streamwise velocity maximum). Here, this suggestion is tested and
compared with the classical Kolmogorov scaling, at various distances from the wall
and Reynolds numbers.

The paper presents detailed experimental distributions, corroborated by DNS
results, of statistical moments (up to the fourth order) of velocity fluctuations,
length scales and power spectra, and their variation with the Reynolds number.
The ensemble of these quantities has never been presented before in detail and with
high accuracy for the present geometry. And yet they would be invaluable in the
context of flow modelling with simplified approaches, such as one-point closures or
large-eddy simulations.

2. Experimental details
The experiment is performed in an open-circuit, blower-type wind tunnel. The

blower and diffuser are connected through a flexible section, which isolates the
vibrations of the fan. Honeycomb and grids are fitted in the plenum chamber to
reduce the turbulence intensity and straighten the flow. A two-dimensional contraction
(area ratio 14:1) precedes the working section, which is rectangular and 7.32 m long.
Roughness elements are attached, transversely to the flow (figure 1), on only one side
of the channel, over the last 3.16 m, or 43 % of the working section. The elements,
made of brass, have a square cross-section (dimension k = 2 mm) and are equally
spaced in the streamwise direction by a pitch λ= 4k. Such separation has been chosen
because it was previously studied by some of us (Leonardi et al. 2003) and because it
displays several features in common with larger pitch values. The channel half-width,
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Case Reb =
UbH

ν
�+

w =
�wuτr

ν
fs [kHz] min

(
Ts

Tu

)
min

(
ff

fK

)
max

(
�w

η

)†

E1 3600 3.8 3.2 840 0.7 2.2
E2 7100 7.9 6.3 833 0.42 3.9
E3 13000 14 12.6 1400 0.27 5.7

Table 1. Main experimental conditions �w is the length of the single wire. Resolution
parameters (virtually all columns) refer to the single wire with diameter dw = 1.27 μm. †The
maximum is located near the rough wall.

measured from the roughness crest, is H =20 mm, while the span of the section D is
750 mm. The aspect ratio D/2H =18.75 is large enough to ensure two-dimensionality
of the flow. Three bulk-flow Reynolds numbers Reb = HUb/ν (Ub is the bulk velocity
and ν is the kinematic viscosity of air) are tested. The three experimental cases are
denoted E1, E2 and E3, see table 1. Nearly the same values of Reb are used in the
simulations.

The origin of the Cartesian coordinate system is at mid-span, with the x-axis parallel
to the streamwise direction, and the y-axis on the leading edge of a roughness element,
figure 1. (The flow is homogeneous in the streamwise direction, when averaged over
the roughness pitch, so that the origin of the coordinate system, with respect to
the contraction, need not be specified.) The ‘true’ origin for y is often taken to lie
somewhere between the base and the apex of the roughness elements, either on the
basis of momentum balance considerations (e.g. Leonardi et al. 2003) or by assuming
the validity of a mean velocity log-law. Here we have simply taken the origin at the
plane of the roughness elements; this choice should not be critical since the focus is
primarily on comparing experimental and numerical results. The fluctuating velocities
are denoted by u, v, w; corresponding capital letters refer to averaged values, while
the overbar represents time-averaging. In the experiments, averages are performed in
time; in simulations, they are performed in time and over the x- and z-axes.

Hot-wire anemometers, with single and X-wires, are used for measuring the
streamwise, wall-normal, and spanwise velocity components. Two streamwise locations
are probed, one corresponding to the leading edge (LE) of the 10th element from
the exit, and a second midway (MW) between the 10th and the 11th element (see
figure 1). These locations are easily accessible from the exit of the tunnel, while
being sufficiently inside the working section to avoid end-effects. The single wire
is used to acquire a second, independent estimate of the streamwise velocity, since,
compared to the X-wire, it has a better spatial resolution (especially close to the
wall where the mean velocity gradient is higher) and its calibration is more reliable.
Differences, between single and X-wire estimates of large-scale quantities, are within a
few percent. For the X-probe, the lateral separation of the wires is 0.76 mm and their
diameter is dw = 2.54 μm; for the single wire, dw = 1.27 μm. In both cases, the length
of the wire �w is �200dw , and the overheat ratio 1.5. A look-up table calibration
(Burattini & Antonia 2005), covering a range of velocities and angles of 0–14 m s−1

and ±40◦ respectively, is used for the X-probe, whereas the single wire is calibrated
in the range 0–14 ms−1, fitting its response to a third-order polynomial. Calibrations
are re-checked at the end of an experiment. A Pitot tube connected to a pressure
transducer (Setra model 239, full scale 0.5 in. H2O or �125 Pa, accuracy ±0.14 % of
full scale) provides the reference velocity. The signal from the anemometers is first



408 P. Burattini, S. Leonardi, P. Orlandi and R. A. Antonia

0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

35

k2
xφu

k2
xφu

0 0.5 1.0

100

kxη

kxη

Figure 2. Spectrum of ∂u/∂x, measured with a single wire for E1, y/H = 0.05 (φu is the
power spectrum of the velocity component u, see (4.7)). Inset: semilogarithmic plot of the
spectrum. –, original distribution; −·, distribution filtered from noise at large wavenumbers;
−−, distribution filtered from noise and corrected for spatial resolution of the probe.

conditioned through buck-and-gain modules, then low-pass filtered at a frequency ff

(corresponding to the rise of electronic noise and close to the Kolmogorov frequency
fK = U/2πη, η = ν3/4ε−1/4 being the Kolmogorov length scale, and ε the mean energy
dissipation rate), and finally sampled at fs = 2ff ; the resolution of the digitization
is 16 bit. The sampling time Ts , expressed in terms of the integral time scale Tu (see
later for its definition), is also included in table 1.

A correction for the attenuation, due to finite resolution of the single hot wire, is
made using a variation of Wyngaard’s (1968) approach, see below. The worst-case
conditions, in terms of resolution, are listed in table 1. Details of the measurement of
the wall shear stress on the rough wall uτr

are given in § 2.2.

2.1. Mean energy dissipation rate

The experimental evaluation of the turbulent kinetic energy dissipation rate is typically
affected by several uncertainties. These arise from electronic noise contamination,
sampling discretization error, finite spatial resolution of the probe, use of Taylor’s
hypothesis, and incomplete knowledge of the energy dissipation rate tensor. Whilst the
first three issues have been alleviated here, the latter two pose almost insurmountable
difficulties in experiments. In this respect, the DNS has provided a posteriori validation
of the simplifying assumptions made in the measurements.

The isotropic mean energy dissipation rate is given by

εiso = 15ν(∂u/∂x)2 (2.1)

(in the experiments, Taylor’s hypothesis ∂/∂x = −U−1∂/∂t is assumed). The spectrum
of ∂u/∂x is given in figure 2, for a location close to the rough wall, where the
resolution is marginal. Although the distribution is free from noise spikes and closes
almost adequately at high wavenumbers, denoted by kx(= 2πf/U , f is the frequency),
electronic noise and discretization error result in a spurious upturn of the distribution
at large kx, near kxη =0.7 in the inset of the figure. Such contamination, which
increases the estimated εiso, can be filtered out by extending heuristically the energy
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spectrum in the far-dissipative range. This range is modelled with the function
exp(a(kxη)2 + b), in a similar manner to that documented by Martinez et al. (1997)
for the three-dimensional energy spectrum. The extrapolation (see inset) effectively
removes the high-wavenumber noise.

The energy and dissipation spectra are then compensated for the limited resolution
of the probe according to method of Wyngaard (1968) but using the spectrum of
Martinez et al. (1997). Figure 2 shows the final corrected energy spectrum. The
resulting corrections to the measured values of εiso are in the ranges 3–6 % for E1,
4–10 % for E2, and 14–24 % for E3 (the larger values are for locations closer to the
rough wall). The X-wire data are not corrected for spatial resolution since they are
used mainly to estimate large-scale quantities.

2.2. Wall shear stress

In experiments, the direct estimate of the wall shear stress from the slope of the mean
velocity profile,

τw = ρu2
τ = ρν

∂U

∂y

∣∣∣∣
y=0

(2.2)

(ρ is the fluid density), presents some difficulties. This is true for a smooth wall, and
even more so for a rough wall, where the mean velocity U varies also with x, very
near the roughness. A more convenient way of estimating τw is via the x-momentum
balance equation,

1

ρ

dP

dx
= ν

d2U

dy2
− d

dy
uv. (2.3)

Here, the flow variables are averaged not only in time but also over one roughness
wavelength but, for simplicity, we keep the old variable notation. Equation (2.3) can
be rewritten

dP

dx
=

dτ

dy
(2.4)

where

τ = ρν
dU

dy
− ρuv (2.5)

is the total shear stress. Since, in the channel, (dP/dx) is constant, from (2.4) it follows
that τ is linear across the section, i.e.

τ (y) = τr + (τs − τr )
y

2H
(2.6)

(r indicates the rough side, s the smooth side, see figure 3). Away from the walls,
the main contribution to τ comes from ρuv, which can be measured reliably with an
X-wire. Therefore, the distribution of the Reynolds shear stress can be extrapolated
linearly to the walls to yield τs and τr .

Further, integration of (2.4) yields (τr − τs) = −2H (dP/dx) or, considering the
individual contributions of the wall friction to the momentum balance,

τr = −yτ

dP

dx
(2.7)

τs = (2H − yτ )
dP

dx
. (2.8)

Here, yτ is the location of zero-crossing of τ (y), which practically coincides with
yuv , the location of the zero-crossing of ρuv (figure 3). Equations (2.7)–(2.8) – which
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Figure 3. Schematic profile of the Reynolds shear stress in a channel with asymmetric
roughness and the method for determining the wall shear stresses.
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Figure 4. Streamwise variation of static pressure measured with pressure taps on the smooth
wall. Pa is the ambient pressure and UM is the streamwise velocity maximum. · − · − · ©, E1;
− − −�, E2; —�, E3. Lines are linear fits to the data used to estimate dP/dx.

express the equilibrium of the fluid regions between the plane of zero shear stress and
the rough or smooth walls (Vlachogiannis & Hanratty 2004; Leonardi et al. 2005) –
provide an independent check on the estimates of τr and τs . In the experiment,
the pressure drop (measured from pressure taps along the smooth wall, figure 4) is
linear, to a close approximation. Incidentally, this suggests that the roughness fetch
is enough to achieve a fully developed flow. A slight dependence on the Reynolds
number remains. In the following, the frictional velocity at the rough wall is estimated
from u2

τr
= τr/ρ. This velocity is subsequently used in wall-based normalizations and

Reτr
.

As noted previously, the present analysis neglects the role of the dispersive stress
(e.g. Finnigan 2000; Ashrafian et al. 2004) which arises from the streamwise waviness
of U and V induced by the periodic roughness geometry. The effect of this stress is
usually limited to a region near the wall, perhaps within one roughness height (Ikeda
2002), although it may increase with λ/k (Ashrafian et al. 2004).
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Reb =
HUb

ν
Resolution Fields 
y+ =


y† uτr

ν
max

(

y

η

)‡

D1 2800 451 × 151 × 193 80 0.8 2.3
D2 6900 601 × 201 × 257 80 1.6 2.8
D3 12000 801 × 321 × 385 80 1.8 2.6

Table 2. Main conditions in the simulations. The size of the computational box is
8H × 2H × πH , in the x-, y and z-directions. †Evaluated on the plane of the crests; ‡the
maximum is at y � 0.7H .

3. Numerical procedure
The non-dimensional Navier–Stokes equations coupled with the incompressibility

condition,

∂(Ui + ui)

∂t
+ (Uj + uj )

∂(Ui + ui)

∂xj

= − 1

ρ

∂(P + p)

∂xi

+
∂2(Ui + ui)

∂x2
j

(3.1)

∂(Ui + ui)

∂xi

= 0, (3.2)

are discretized in an orthogonal coordinate system (as in § 2, upper- and lower-case
variables represent mean and fluctuating quantities, although in the present section
the index notation is used) with a staggered central second-order finite-difference
approximation. In (3.1), a constant pressure gradient dP/dx is prescribed, so as
to maintain a constant flow rate. Here, only the main features of the numerical
method are recalled (see Orlandi 1999, for details). The discretized system is advanced
in time using a fractional-step method with viscous terms treated implicitly and
convective terms explicitly. The large sparse matrix resulting from the implicit terms is
inverted by an approximate factorization technique. At each time step, the momentum
equations are advanced with the pressure at the previous step, yielding an intermediate
non-solenoidal velocity field; then, by solving Poisson’s equation, the field is made
solenoidal. A hybrid, low-storage, third-order Runge–Kutta scheme is used to advance
the solution in time.

The roughness is treated by the immersed boundary (IB) technique described in
Leonardi et al. (2006b), and periodic boundary conditions are applied in the x- and
z-directions; zero velocity is imposed at the walls. The applicability and validity of
the IB method have been extensively discussed in the literature. It allows an accurate
and efficient treatment of the solid boundaries that cannot yet be matched by other
approaches, such as the body-fitted method. Strong support for the IB method in
a geometry similar to that considered here was provided in Leonardi et al. (2003).
They showed that the pressure distribution around circular elements placed on the
wall agreed closely with that measured in the experiment of Furuya et al. (1976). The
number of velocity fields used for time averaging is 80 (the velocity fields are two
time units apart, the unit being H/U1). Statistics performed using 40 fields showed
negligible differences. The initial velocity field (at the start of the computation) was
taken from a smooth-wall turbulent channel flow database at Reτ =380. In order to
achieve the desired flow rate, about 300 time units were discarded before averaging
was applied. A grid-independence test was performed for the case at the intermediate
Reynolds number, see Leonardi et al. (2006b). Table 2 lists the main conditions in
the simulations, including the number of grid points in the x-, y- and z-directions,
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Figure 5. Mean streamwise velocity. Symbols: experiments; lines simulations. Filled symbols:
X-wire; empty symbols: single wire. (a) E1 and D1; (b) E2 and D2; (c) E3 and D3. Profiles
(b) and (c) are shifted upwards by 0.5 and 1. Arrows indicate yU/H in experiments (values for
the simulations are listed on table 3).

the number of independent fields for the statistical analyses, and the worst-case
resolution in the wall-normal direction (normalized by inner and Kolmogorov scales).
Note that, while in the experiments the resolution is worst close to the wall, in the
simulations the clustering of grid points near the roughness shifts the point with the
poorest resolution of the small scales to the location y/H � 0.7. Furthermore, in the
simulations, ε is estimated from the complete dissipation tensor, i.e.

ε =
ν

2

(
∂ui

∂xj

+
∂uj

∂xi

)2

, (3.3)

instead of (2.1).

4. Results
4.1. Velocity statistics

The distributions of the mean streamwise velocity (figure 5), as obtained from the
experimental and numerical data, are in good agreement with each other. Note that
the values from the single and X-wire overlap. While the profiles are skewed towards
the smooth wall (the rough wall is more effective at slowing down the flow), there
is no discernible difference between profiles at LE and MW, implying a negligible
modulation of the mean flow due to the roughness. The numerical results of Cui
et al. (2003) and Nagano et al. (2004) indicated that, for the flow in an asymmetric
channel of similar geometry to that considered here, the streamwise variation of the
mean velocity is rather small (see figure 9 of each paper), although it may become
more important at larger λ/k. The location yU where U is maximum (indicated by an
arrow in figure 5) is �1.32H , for the two experimental cases at the higher Reynolds
numbers, suggesting that yU may have reached its asymptotic value (see table 3). It is
perhaps not a coincidence that, for E2, the roughness Reynolds number k+ = kuτr

/ν

is just below 70 – the limit for fully rough flows over sand-grain roughness.
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Case Reb =
UbH

ν
Reτr

=
uτr

H

ν
Reτs

=
uτs

H

ν
k+ =

kuτr

ν
yU/H uτr

/UM uτr
/uτs

E1 3600 300 230 30 1.24 0.073 1.31
E2 7100 620 430 62 1.32 0.074 1.44
E3 13000 1120 760 112 1.33 0.072 1.48

D1 2800 260 190 26 1.22 0.078 1.38
D2 6900 634 430 63 1.27 0.076 1.46
D3 12000 1094 730 109 1.27 0.076 1.50

Table 3. Main results for measurements (E1, E2, E3) and simulations (D1, D2, D3).
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Figure 6. RMS turbulence intensities. (a) E1 and D1; (b) E2 and D2; (c) E3 and D3. (b)
and (c) are shifted upwards by 0.1 and 0.2. Symbols: experiments; lines simulations. Filled
symbols: X-wire; empty symbols: single wire. �, �,—, u; �, ·−, v; �, −−, w. Arrows indicate
yU/H from experiments. Repeated symbols are for different streamwise positions (MW and
LE).

There is good agreement also between measured and calculated turbulence
intensities, figure 6. The maximum intensities occur near the rough wall, while the
locations of the minima are near, but not coincident with, yU , particularly for v and
w (noted also in HL). Clearly, this contrasts with the outer layer of the symmetric
channel (smooth or rough), where the two locations coincide. The relative magnitudes
of the three components are such that u2 >w2 >v2 everywhere, as in a smooth
channel. The profiles of u2 near the rough wall depend markedly on Reτr

. For the

smallest Reτr
, the distribution of u2

1/2
has a wide region (0.05 � y/H � 0.5) where

the curvature is positive, as in the vicinity of a smooth wall. As Reτr
increases, this

region shrinks, and the profile of u2
1/2

becomes almost linear for 0.1 � y/H � yuv/H ,
similarly to v and w. This suggests differences in the turbulence generation at the
rough wall, since the second derivative of the turbulence intensities is linked to the
viscous diffusion. (In the experiments, the limited resolution of the X-probe can
attenuate the gradient of the actual profile, very near the wall.) Like U , no significant
dependence on the streamwise position (i.e. LE or MW) is observed, for the normal



414 P. Burattini, S. Leonardi, P. Orlandi and R. A. Antonia

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

1.1

y/k

α
M

W

m
ax

 (
α

)

α
L

E

m
ax

 (
α

)
,

α = w2
1/2

α = u2
1/2

α = v2
1/2

Figure 7. Ratio of the phase-averaged quantities (at MW, thin lines, and LE, thick lines) to
the maximum of those ensemble averaged along the streamwise direction. —, u; −−, v; ·−, w.

0 0.5 1.0 1.5 2.0

0

2

4

6

8

(× 10–3)

y/H

↑

↑

↑

0 500 1000 1500
1.2

1.4

1.6

Reτr

uv
U2

M

uτr

uτs

Figure 8. Reynolds shear stress. �, �: E1; �, �: E2; �,�: E3. Empty symbols: from X-wire;
filled symbols (at y = 0): estimate of u2

τr
= τr/ρ from pressure gradient. Thin lines are a linear

fit to the experimental data for y/H � 0.5; ·−, E1; −−, E2; —, E3. Arrows indicate yU/H
in experiments. Thick lines are uv/U 2

M in simulations: ·−, D1; −−, D2; —, D3. Inset: ratio
of friction velocities at the wall, for the three cases; dotted symbols: DNS; empty symbols:
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stresses. This is further confirmed by the numerical profiles of the turbulent intensities
averaged in phase in the streamwise direction, figure 7. Their difference with respect
to the profile that is ensemble averaged over the length of the channel becomes
negligible for y/k > 1.5.

The Reynolds shear stress uv (figure 8) varies linearly, away from the walls. The
contributions to τ from the viscous and dispersive stresses must therefore decay
rapidly, so that ρuv accounts for most of the total shear stress. Consequently, a linear
extrapolation to y = 0 (the plane of the crests) of the straight portion of uv readily
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provides the friction velocity at the rough wall. (In the vicinity of the rough wall, the
resolution of the X-wire is critical because of the steep velocity gradients, and the
difference with the numerical data is largest.) The resulting value of τr is close to
that inferred from the pressure drop, see figure 8. For the three experimental cases,
the ratio uτr

/UM remains nearly constant and �0.073, implying that the friction
coefficient of the rough wall (proportional to u2

τr
/U 2

M ) is independent of Reτr
, in

the range considered. This is in accord with earlier observations from simulations
(Miyake et al. 2002; Cui et al. 2003; Leonardi et al. 2003) and experiments (Bakken
et al. 2005). In each case, the major contributor to drag is pressure, and therefore the
friction coefficient is expected to be largely independent of the velocity. On the other
hand, the friction coefficient at the smooth wall varies with the Reynolds number. The
ratio uτr

/uτs
, see inset of figure 8, increases with Reτr

, consistently with the reduction
of the skin-friction coefficient at the smooth wall, as Reτs

increases. HL and Ikeda
(2002) (who had Reτr

� 5600 and 900, respectively) reported values of uτr
/uτs

as large
as �2, for λ/k =10.

The locations yuv, where uv crosses zero, are almost indistinguishable from yU

(figure 8), and therefore no region of negative turbulent energy production is expected.
This point warrants further analysis since, as noted in the introduction, the evidence
gathered so far in the asymmetric channel is somewhat inconclusive. It was pointed
out earlier that the location of yuv � yτ is controlled by the ratio of the shear stress
coefficients at the two walls. The actual expression is obtained from the ratio of (2.7)
and (2.8), namely

yτ

2H
=

τr

τr − τs

=
u2

τr

u2
τr

+ u2
τs

. (4.1)

While, arguably, u2
τr

becomes constant (when Reτr
exceeds a critical, low value), the

behaviour of u2
τs

is more complex (e.g. figure 7.10 of Pope 2000). This latter quantity
first decreases in the laminar regime, then increases during transition before finally
decreasing in the fully turbulent regime. So yτ must follow a similar but opposite
trend, see (4.1), shifting back and forth between the two walls. Moreover, it is plausible
that, as Reτr

increases, the variation of yU lags behind that of yuv, since the former is
related to a first-order quantity (i.e. the mean velocity). For example, yU could increase
monotonically from H/2 – the solution for symmetric walls – to the asymptotic value
for large Reτr

. If this is the case, there may be ranges of Reτr
values for which the two

locations do not match and yuv > yU , yielding regions of negative energy production.
In addition, one should not neglect the effect of λ/k or that of the roughness shape
on the difference between yuv and yU , as shown in Leonardi et al. (2005). In this
respect, it would be interesting to assess systematically the behaviour of yuv and yU

in an asymmetric channel with two different rough walls.
Fluctuation intensities – normalized by the scales uτr

and yuv – are represented in
figure 9. The effect of the Reynolds number is still appreciable, particularly on the
streamwise component. This is surprising since, as noted earlier, (uτr

/UM )2 is constant,
in the present range of Reτr

. One can conclude that, although the drag coefficient
at the rough wall is largely independent of the Reynolds number, the profiles of the
turbulence intensities (particularly for u) close to the wall are not. Applying the same
normalization, HL obtained a comparable degree of universality for their profiles
(also included in figure 9). Note that although they had λ/k =10, their data are not
dissimilar from ours.

It is useful to compare our turbulent profiles with those in a smooth-wall channel.
The data of Moser, Kim & Mansour (1999) for a smooth-wall channel at Reτ = 590
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Figure 9. RMS turbulence intensities normalized by uτr
and yuv . Symbols: experiment

(data from single and X-wire). Lines: simulations; shaded regions: data from HL for
Reb = 18500–56000 and λ/k = 10. Empty symbols: E1; dotted symbols: E2; cut symbols:
E3; �, u; �, v; �, w; ·−, D1; −−, D2; —, D3.
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Figure 10. RMS turbulence intensities compared to the smooth-wall data of Moser et al.’s
(1999) simulations at Reτ = 590. Symbols: present data E2, normalized by uτr

and yuv; ©, u;
�, v; �, w. Lines: from Moser et al. (1999), normalized by uτ and H ; ·−, w; −−, v; —, u.

are plotted along with case E2 (Reτr
= 620), in figure 10. Near the roughness, the

peak of u2 is largely reduced, most likely because of the shortening of the largest
structures, as also pointed out by Bakken et al. (2005). However, when the normalized
value of y exceeds �0.05, the agreement between smooth- and rough-wall channel
data is good for all the normal Reynolds stresses. Values at higher Reτ (= 950) from
del Alamo et al. (2004), figure 11, highlight the same type of agreement, perhaps
extending even closer to the rough-wall. Hoyas & Jiménez (2005) reported that, in
the smooth channel, the profiles of u2 are still evolving in the range Reτ = 500–2000
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Figure 12. Skewness of u, v and w. �, E1; �, E2; �, E3; ·−, D1; −−, D2; —, D3;
×, Sv from Nakagawa et al. (2003) over a wavy wall.

and for all values of y, when normalized by u2
τ and H . By comparison, v2 and w2

were found to be less dependent on Reτ . From figures 9–11, it could therefore be
argued that the turbulent profiles are much less sensitive to the Reynolds number in
the rough-wall case, possibly making modelling of this flow easier to achieve.

The skewness, Su = u3/u2
3/2

, and similarly for the v and w components, is plotted
in figure 12. Since the single-wire u data are in close agreement with the X-wire data,
only these latter are plotted, to avoid crowding. For each component, the distributions
are rather similar at different Reynolds numbers, in particular close to rough wall. Su

is negative over almost the entire y range, except very close to the walls, as indicated
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Figure 13. Kurtosis of u. �, E1; �, E2; �, E3. ·−, D1; −−, D2; —, D3.

by DNS (very near the walls, the experimental data are not available) and reaches
a minimum near yuv . The profile of Sv is roughly antisymmetric around yuv , taking
positive values near the rough wall. Sw is practically zero everywhere, as it should
be for symmetry. Although our profiles of Sv match those reported by Nakagawa
et al. (2003) in an asymmetric channel with one wavy wall (see figure 12), they
differ substantially from those in HL, where Sv is nearly coincident with Su. The
present profiles of the three skewnesses are however fully consistent with those in the
symmetrically roughened channel of Ashrafian & Andersson (2006b). The kurtosis of

u, Ku = u4/u2
2

(figure 13), has values close to 3 (that of the normal distribution) for
a wide region near the rough wall, also noted by HL.

Figure 14 shows the Taylor microscale λu = (u2/(∂u/∂x)2)1/2. The numerical and
experimental distributions have similar trends, with a maximum near y = H . The
Kolmogorov length scale, plotted in figure 15, exhibits a maximum close to yU, while
decreasing almost linearly on the two sides of the peak. (Incidentally, this suggests
a strategy for refining the numerical grid in the wall-normal direction, to achieve
optimal resolution of the smallest scales.) Note that the larger difference between E1
and D1 is due to the disparity in the Reynolds number between these two cases.
The resolution of the single wire can be estimated from the vertical scale on the

right of figure 15, where η is normalized with the length of the wire. Rλ = λuu2
1/2

/ν

(figure 16) attains larger values on the rough-wall side, particularly for E2 and E3;
for this latter case, the maximum is near 230, at y/H � 0.5. The comparison with
the smooth-wall channel flow of Moser et al. (1999) and del Alamo et al. (2004),
respectively at Rτ = 590 and 950, reinforces this conclusion (see also Abe, Kawamura
& Choi 2004a ,b).

4.2. Energy budget

The turbulent kinetic energy budget in the channel is

1

2

dq2

dt
= 0 = P + T + Ψ + D − ε, (4.2)
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where q2 = u2 + v2 + w2 is the total turbulent energy and

P = −uv
∂U

∂y
, (4.3)

T = −1

2

∂q2v

∂y
, (4.4)

Ψ = −∂pv

∂y
, (4.5)
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Figure 16. Taylor-microscale Reynolds number. Symbols: experiments; lines: simulations.
�, ·−, E1, D1; −−, �, E2, D2; �,—, E3, D3. Thick dotted line, data from the smooth-wall
channel flow of Moser et al. (1999) at Rτ = 590; thick solid line, data from the smooth-wall
channel flow of del Alamo et al. (2004) at Rτ = 950.

0 0.5 1.0 1.5 2.0

–20

–10

0

10

20

y/H

y/H

0 200 400 600
y+

Production

Dissipation

0 1 2

0

1

2

3

ε
�

Figure 17. Major terms in the turbulent kinetic energy budget. Mean energy dissipation rate
−εH/u3

τr
(empty symbols and thin lines); energy production PH/u3

τr
(filled symbols and thick

lines). �, �, E1; �, �, E2; �,�, E3; ·−, D1; −−, D2; —, D3. Top abscissa scale refers to case
E1. Inset: ratio of production to dissipation terms (key as in main figure).

D = −1

2
ν
∂2q2

∂y2
, (4.6)

are the turbulent production, turbulent diffusion, pressure diffusion and viscous
diffusion. In (4.2), the effect of the dispersive stress has been neglected. Although the
pressure term is not measurable, the DNS of Leonardi et al. (2006a) shows that its
effect is important only very close to the wall. Among the other terms, the major
contributors are production and dissipation (figure 17). The balance between P and
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—, E3.

ε is almost complete (their ratio is close to 1, as shown in the inset of figure 17) in
the region 0.1 � y/H � 0.9. It can be noted that the centre of this range corresponds
to where Rλ is maximum (figure 16). In a boundary layer, P � ε was associated
by Townsend (1961) with the presence of an equilibrium layer. For E1, this region
corresponds to 50 � y+ � 280 (see the horizontal axis at the top of figure 17). Energy
budgets from numerical studies of a channel flow with wall roughness (Nagano et al.
2004; Miyake et al. 2001; Ikeda 2002) confirm the dominant role of production and
dissipation, in the above-mentioned range. Another conclusion to be drawn from the
comparison with the DNS data is that the flow is, to a close approximation, locally
isotropic (recall that εiso is used instead of ε in the experiments).

4.3. Spectra

Distributions of φu(kx), defined such that

u2 =

∫ ∞

0

φu(kx) dkx, (4.7)

are shown in figure 18. These data, normalized by u2 and yuv, have been measured
with the single wire in the region 0.14 � y/yuv � 1. At each Reynolds number, the
profiles collapse approximately onto a single curve, over the entire range of scales.
Nakagawa et al.’s (2003) spectra, measured over a wavy wall, display the same level
of collapse, for approximately the same locations. As Reτr

is increased, the shape
of the spectrum changes and a scaling range becomes more evident. This is clearer
in figure 19, where the normalization is on Kolmogorov scales. The collapse of the
spectra is rather good at large wavenumbers (in the dissipative range) at all Reτr

, and
extends to smaller wavenumbers with increasing Reτr

. The spectra for a location near
y � 0.5H (where Rλ is largest) are plotted in the inset of figure 19, after multiplication
by (kxη)5/3, in order to highlight the inertial range. Although, as Rλ increases, the
maximum tends to flatten, a wide plateau has not yet formed. This is expected,
however, considering the low values of Rλ.
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Figure 20. Spectra of u, v and w at y/H =0.2 for E1 (solid lines) and D1 (dashed lines),
normalized by the local turbulence intensity and yuv . (The distributions of v and w are shifted
down by 2 and 3 decades.)

Numerical and experimental spectra are compared in figures 20–22. All three
velocity components are considered at one location (y/H =0.2) in the equilibrium
layer. Note that the DNS spectra are computed from the spatial distributions of
the velocity in the streamwise direction and, therefore, do not require Taylor’s
hypothesis. For each component, reasonable agreement is observed between numerical
and experimental data. Profiles at Reτr

� 3600 from HL (their figures 15–17) are also
included in figure 22. While their spectra for u and v display very similar trends
to the present u and v spectra, their w spectrum differs from ours. Spectra of u

and v measured by Nakagawa & Hanratty (2003) over a wavy-wall channel flow at
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Figure 21. Spectra of u, v and w at y/H = 0.2 for E2 (solid lines) and D2 (dashed lines),
normalized by the local turbulence intensity and yuv . (The distributions of v and w are shifted
down by 2 and 3 decades.)
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Figure 22. Spectra of u, v and w at y/H = 0.2 for E3 (solid lines) and D3 (dashed lines),
normalized by the local turbulence intensity and yuv . (The distributions of v and w are shifted
down by 2 and 3 decades.) ©: data from HL at y/H � 0.2 for Reτr

� 3650; �: data from
Nakagawa & Hanratty (2003) at y/H � 0.24 for Reb =11000.

Reb =11000 are also included in the figure. Agreement with our spectra is good only
up to kxyuv � 20, while the intensity of the fluctuations at larger wavenumbers is much
lower over the wavy wall (since these spectra were measured with a laser Doppler
anemometer, some underestimation of the velocity fluctuations at large k should be
expected.) Despite this, a conclusion that can be drawn from the comparison is that
a consistent portion of turbulent scales, physically located in the equilibrium layer,
has a similar energy distribution for different boundary conditions, when scaled with
the variables u2 and yuv . This could prove useful in modelling the large scales in this
flow type.
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5. Conclusions
Several aspects of the flow in an asymmetric channel, with roughness elements on

one side, have been described in the present work. Experiments and direct numerical
simulations, carried out for the same geometrical and flow conditions, have provided
data for turbulence intensities, length scales, major terms in the turbulent energy
equation, and spectra. The close agreement between experimental and numerical
results serves to reinforce the present conclusions. When the normalization is based
on outer variables – the rough-wall shear velocity and the zero-crossing location yuv

of the Reynolds shear stress – the magnitude of the turbulence intensities on the
rough-wall side of the channel evolves marginally as Reτr

increases between 300 and
1100. This is consistent with the independence of Reτr

of the rough-wall friction
coefficient. The normalization on outer variables is also able to bring the present
distributions into accord with those for a smooth-wall channel at similar Reτ , except
for a small region near the wall. Although the results in this paper pertain to a
particular roughness pitch-to-height ratio, our conclusion regarding the Reynolds
number independence should apply equally to other values of this ratio, provided the
pressure distribution around the elements remains the major contributor to the drag.

The turbulent energy budget shows that the turbulent energy production is always
positive. Further, the energy dissipation rate and production terms are found to be
dominant and approximately in balance in a wide region (0.1 � y/yuv � 0.7) on
the rough-wall side of the channel. The isotropy of the small scales, assumed when
estimating the measured mean energy dissipation rate near the rough wall, appears to
be a valid working hypothesis. This is also commensurate with the higher values of the
Taylor-microscale Reynolds number achieved on the rough-wall side of the channel.
Across almost the entire wavenumber range and for 0.14 � y/yuv � 1, the spectra of u

collapse approximately when normalized on the local longitudinal turbulence intensity
and yuv , for any fixed value of Reτr

. As the Reynolds number varies, this normalization
becomes ineffective, and there is little doubt that Kolmogorov normalization provides
a better description of the dissipative range and at least the beginning of the inertial
range.
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